Circles 7.G.4	LEQ: What is the relationship between circumference and diameter?		
Radius	Symbol/ Formula distance of the center of a circle to its circumference. Symbol/ Formula $r = radius$		
Diameter	a straight line going through D= diameter the center of the circle to touch both sides of the circle		
Circumference Pi	the distance around a circle $\pi \frac{22}{7} 3.14$ $C = Circumference$ $C = \pi D$ $C = 2\pi r$		
	Cherry pie's delicious!		

LEQ: how is the formula used for finding area and circumference?

find the circumference of a circle given the radius

- 1. Write the formula $C = 2\pi r$
- 2. substitute what you know
- 3. Evaluate

1. Write the formula $C = 2\pi r$ 2. Substitute what you know 3. Evaluate

Circles 7.G.4	LEQ: What is the relationship between circumference and diameter?
Radius	Symbol/ Formula distance of the center of a circle to its circumference. Half of the Diameter
Diameter	a straight line going through the center of the circle to touch both sides of the circle
Area	the size a surface takes up $A = Area$ $A = \pi r^2$
Pi	$\pi \frac{22}{7} 3.14$
	Apple pies are too!

LEQ: How do you use the formula for area of a circle?

find the area of a circle given the radius

- 1. Write the formula $A = \pi r^2$
- 2. substitute what you know
- 3. Evaluate

1. Write the formula $A = \pi r^2$ 2. Substitute what you know 3. Evaluate

	P	S	
Find the area Use 3.14 for	π. Round to the nearest te		millimeters.
	P	<u>8</u>	

Working Backwards

What is the radius of a circle whose area is 28.26 ft²?

- 1. Write the formula $A = \pi r^2$
- 2. substitute what you know
- 3. Evaluate

- $1. \qquad A = \pi r^2$
- 2. = 3.14 3.

square root is the opposite of squares

$$1^{2} = 1 \qquad \sqrt{1} = 1$$

$$2^{2} = 4 \qquad \sqrt{4} = 2$$

$$3^{2} = 9 \qquad \sqrt{9} = 3$$

$$4^{2} = 16 \qquad \sqrt{16} = 4$$

$$5^{2} = 25 \qquad \sqrt{25} = 5$$

$$r^{2} = r^{2} \qquad \sqrt{r^{2}} = r$$

LEQ: What is the relationship between the shaded and unshaded region of a shape?

Find the area of the shaded region?

STEPS:

- 1. Find the area of the outside shape.
- 2. Find the Area of the inside/ unshaded shape.
- 3. Subtract the two of them to get the area of the shaded region.

1. Area = L x W
(15) x (5)

$$75 \text{cm}^2$$

2. Area = πr^2
 $3.14(2.5)(2.5)$
 19.63cm^2

3.
$$75 \text{cm}^2 - 19.63 \text{cm}^2 = 55.37 \text{cm}^2$$